Introduction to C/C++

With some HPC added for fun ©

Martin Vickers
mjvO08@aber.ac.uk

What | am going to try to teach

* The ‘C/C++’ Programming Language

— Rather than just C++, which is almost identical
except for a few key additions (These will be
covered at the end)

* High Performance Computing

— We all want our programs to run faster, especially
when you have a deadline

* Alittle bit of UNIX and Shell scripts
Mainly because it’s easier to work with and | like

it ©

What | am going to conveniently
forget about..

* Header files
— Important for large programs

 We are using a C++ compiler which means
some things won’t work in C alone

* Real concurrent programming. e.g. locks,
semaphores etc.

History of C

Developed around 1969-1973 at AT&T Labs to
e used with UNIX by Dennis MacAlister
Ritchie

Features derived from ‘B’

Procedural Language
The addition of struct made it very powerful

Much of UNIX kernel isin C

Types of C

e Kernighan and Ritchie (K&R)

— 1978 book The C Programming Language
— The first ‘informal’ C specification
— Introduced; standard libraries, long int,
compound operators (e.g. i *= 10)
* ANSI C (American National Standards Institute)
— To establish a standard C

— Later adopted by ISO (International Organization
for Standardization)

Types of C

* C99
— An updated version of ANSI C

— New features (none of which are important for
this lecture series)

— Been the standard ever since even though C1X has
been on the drawing board since 2007

Why is C important?

* Almost all operating system kernels are
written in C

— FYI — A kernel is the interface between hardware
and software — e.g. It lets the programmer use the
hardware

* You can work with the most fundamental
parts of the computer using C

* Asitis ‘low level’, it’s very very fast

Downsides to C

* Compilation standards ENOUGH ROPE-
are often an issue TO SHOOT
* |t does things you don’t YOURSELF

expect
— It’s your fault, not the
language!!!!

* You can really mess
thingsup in C

—-_Programming

ALLEN I. HOLUB

Where did C++ come from?

Bjarne Stroustrup at Bell Labs
Originally called “C with Classes”

Developed in 1979, later became C++
in 1983

Has enhancements such as classes,
overloading, multiple inheritence,

exception handling, polymorphism
(very cool ©) and much more

High Performance Computing (HPC)

Big Computers

Cost a lot of money

Lots of memory,
processors and storage

Very powerful

....we have one in the
basement (holly)
— A Beowulf cluster

HPC — CPUs and Memory

Single CPU and Memory

Multiprocessor with
Shared Memory

Block Layout of Queued State Machine (&) —

o 100P

[Producer]

COMMANDS HANDLER or PROCESSOR
[consumer J

Shared Memory Parallel Computer

Central Memory shared
by all processors

HPC — CPUs and Memory (cont.)

 Multiple CPU and Memory

— Essentially lots of computers
; i |

hooked up together with one .I .- —!

in charge

Distributed Memory Multicomputer

e Also known as a Beowulf
cluster |

* Simply put, lots of s
computers can be a High
Performance Computer

Right...before we program

* UNIX®©

— The command line (it’s so pretty)

— Everything runs from the command line
* Editor

— EMACS, VI, nedit, pico

 Compiler

— g++, gcc (there are lots more...and they don’t all
produce the same output)

Hello IMAPS]

The most basic C program you will write

Things to think about;

— #include <iostream>
— int main(void) // youmay see justmain ()
— cout <<

— Linesendin;
g++ program.c (simples)
Produces exec file called a.out

— Canrun g++ program.c —-o myProgram to produce something
else

To run a.out (or whatever you’ve typed using -o)

— ./a.out

Variables

* Nothing new really;

— Four common primitive types

e char, int, float anddouble

* These can be signed or unsigned
— unsigned are non-negative values

— signed are half/half (if you declare signed int, itisthe
same as simply int)

* Sizes
— longor short (gives a larger range — architecture specific)
— Assignment
e int a = 10;

* int b = a;

A little more about primitive types

* |Integer types — whole numbers
—bool //0 or 1, true of false - 1 bit
—char //8 bits
— short //16 bits
—int //16 bits
—long //32 bits

* Can be signed or unsigned

An aside - Binary

e Justin case you didn't know;
— A binary zero or one is called a bit
— There are 8 bits in a byte

— A byte is the smallest addressable space in
memory

— Read binary from right to left (an unsigned char)
128 064 32 16 8 4 2 1

0 11 0001 1= 99

— It gets more complicated with floating points, HEX
etc.

More primitives

* Floating point types
—float //32 bit
—double //64 bit
— long double //128 bit

* And you can make your own!!!
— We will come to that later

* Let's see how big types are;

—sizeof (variable) ;

Arithmetic Operators

e Again, nothing new
— 4+ = % /
— Extras such as;
* ()
* S modulus

 ++ and ——(increment and decrement) e.g. a++ orb--

* Orders of precedence

— Look it up, but it is pretty much what one would
expect (well at least at this level)

Conditional and Logical Operators

 Comparing variables
* More stuff you probably know..

— Conditional

e equalto==(e.g.a == Db)

* notequalto !=(e.g.a '= Db)

* greater/lessthan< > (e.g.a > Db)
— Logical

* not ! (e.g. !'a)
e and &&(a && Db)
*Orfl(a || Db)

Putting it together with 1 £ statements

1f (thing) {
//do something

} else 1f (other thing)
//do something different

} else {
//well it’s something else

J

 This is an if statement...the bread and butter
of procedural programming

Putting it together with 1 £ statements

* CODE EXAMPLE, | suppose we could write
something live in a lecture....

Loops

 While loop (will only run if condition is TRUE)
while (something) {
//keep doing
}

e Do while (will ALWAYS do the loop once)
do {
//keep doing

} while (something);

Loops (cont.)

* For loop — my favourite loop ©
for(initialisation; condition; update) {
//do something
}

* Example (this will execute 10 times);
for(int 1 = 0; 1 < 10; i++){
//do something
}

/*a quick note, this loop wouldn’t work
in C, as you need to declare 1 outside
the loop*/

Loops.C

Example code

Infinite loop

* DANGER WILL ROBINSON!

* An infinite loop can be caused on purpose or by
mistake
— On purpose
while (1) {
}
— Bit of a (intentionally daft) mistake
int 1i;
for (i = 1; 1 > 0; 1i++) {
//loop code

} 5
Note: In reality, when 1 gets to the size limit of an int, it’ll stop

Break and Continue

* break; //exits to the nearest outer loop
* continue; //skips to the test condition of loop

* This example will show loops
* adv_loops.c //while with break

* adv_loops2.c //do while with break

Switch statement

e Kind of like an if statement...

switch (variable) {

case 1:

//do something when wvariable = 1
case 2:

//do something else when variable = 2
default:

//if none of the others, do something

Functions

* Break up the program a little

#include <iostream>
vold myFunction () {
printf (“Hey, look at me!! I am a function \n”);
}
int main(void) {
myFunction(); //calls the function

)
* main () hasto be atthe bottom of your program

Let's take a minute to think

« Commenting your code

/*Everything inside here will be a comment even
if it's multiple lines*/

int a = 0; //for the rest of the line
 Make you code look pretty ©

Example

Arrays

 These can get very complicated, but we will

start simple....
#include <stdio.h>
int main(void) {
int anArray[10];
for(int 1 = 0; 1 < 10; 1i+4++){

anArray[i] = i; //populate array

Another way to declare an array

#include <stdio.h>
) {
int anArrayl[3] = {1, 2, 3};
0; 1 < 10; 1++){

int main(void

for(int 1 =

anArray[i] = i; //populate array

e array.c example

Command line arguments

* This is why we love unix

* Allows program
variables to be defined
at run time

How to use it

#include <iostream>

int main (int argc, char *argv([]) {
cout << argv([l] << “\n”; //print out 1°%% arg
cout << argv[0] << “\n”; //program name

cout << argc << “\n”; //number of args

 What does char *argv[] actually mean?

— Basically you have a 2D array...more on this later

So now we have the
argument....well it's a char

* We need to change it to something else
#include <iostream>

#include <stdlib.h>

int main(int argc, char *argv([]) {

int anArraylargc-1];

for(int i = 1; 1 < argc; i++){
anArray|[i-1] = atoi(argv[i]);

}

for(int 1 = 0; 1 < (argc-1); 1i++){

std::cout << “Contains ” << anArrayl[i] << ”\n”;

Some things to note..

Notice how we suddenly have to be careful
about what our iterator is doing.

The atoi and others belong to stdlib.h
atoi() //converts a char array to int
atol() //...to long integer

atof () //...to double

More on strings later

I'm sick of writing std: : cout
So we can use namespaces ©

e |t's a C++ thing, so wouldn’t work in C
* At the top of the page you can write;

usling namespace std;

* This allows you to use commands within std
without having to mention it every time

Since I've mentioned std, what is
it?
This is the ANSI Standard Library

It contains lots of functions written for C and
C++ (since most of the C stuff is old, it’s still
there but has been renamed)

e e.g.cstring and string

To use these, you must;

#include <header> or #include <name>

http://www.cplusplus.com/reference/

Some libraries you may wish to use

e #include <iostream>
* We've been using already for cout

e #include <math.h> or#include <cmath>
* Gives you all your mathematical operators

e #include <stdio.h>
e Thisis for C++ input/output

* printf(“This is useful \n”); //an
alternative to cout

A note on Architecture

32 or 64 bit
Two implications; memory and word size

e But there are more....

Compilation is important

Working with primitive types in memory — use
sizeof () to be safe (you’ve already used this)

OK A bit of UNIX goodness ©

* You can do lots of things from the command
line using BASH (Bourne Again SHell)

* A simple usage of this is to run a program
multiple times (consider larger programs)
* We have loops in BASH;

for i in 1 2 3; do echo $i; done

It’s a bit different from C/C++

What does your program actually
do?

* This can be viewed by using strace in UNIX

call
system_call_table[eax] &
= -3

returm

OK, let’s do a few exercises

* Write hello IMAPS — simply to make sure you
can use an editor, the command line and g++

 Write a program to calculate the smallest of
several values

e User enters X values into the command line
* Your program will find the smallest
e Printitto the screen

* | will show you how to run multiple time from
a data file

Reading in a file

* So far, we’ve taken user input from the
command line (which is so pretty ©)

e However.....there is a limit to how much you
can put in the command line

 E.g.on 32bit Linux kernal 2.6, max = 32,767

e Soif wereaditinfrom a file, we can have
more ©

fstream

* Asimple version

string line;
1fstream myfile (“myfile.dat”);
while(!myfile.eof ()) {

getline (myfile, line);

What if the file fails to read?

* |t crashes and you don’t know why

* So....
1f('myfile) {
cout << “The file didn’t open\n”;

return -1;

}
* Did you ever wonder what the int main ()
part did?
* It defaults to 0 is main executed without error
* By returning -1, the program exited with error

Strings

In C there are no strings, we have char arrays
As such they are a pain to work with
However luckily C++ has string.h ©

So can read out file line by line as a string
Convert out string to the format we want;

* int x = atoi(line);

Great, but what if the file contains
many columns

 Told you strings were a pain....
* We need to split the line

char * split;
split = strtok(line, ™ %);
while (split !=NULL) {
cout << split << “\n”;
split = strtok (NULL, “ %);
}

e string_split.c

The bubble sort algorithm

* Verysimple (if a little inefficient)

e Sorts numbers into order

* It works like this;

Go through every element in the array

If the element is larger than the one to its right, then
switch it

If you’ve switched it, store somehow that you’ve made a
switch (you don’t need to record what you’ve done)

Repeat until you complete a pass without switching
anything

Exercise

Implement bubble sort

Tip: It’s not that different from the smallest
value program

Program specific details
./a.out filename.dat 10000
The file contains 1 column of integers

Print out file in the correct order

The t ime command before the program tells
you the time taken to run

Any optimisations?

e QObservation:

 The largest value, even if it is in the very first
element of the array, will always be pushed to
the end.

e So:

« We would loop through all the elements the first
time, then all but the end one the second time
and so on.

Performance

* On 100,000 elements, run 3 times for each
algorithm on Intel 2.5Ghz

e Bubble sort
* 1ml11.492sec 1m11.857sec 1m10.324sec

* Optimised Bubble sort
e 53.253sec 51.658sec 53.383sec

We have lots of files to sort

e OK so we have 10 files to sort, how can we
speed things up?

* BASH ©

A note on HPC

* The easiest way to use HPC is to break the job
down into multiple parts, and run it in several
places

* |ssues:
 Keeping track of what you’ve done
 What if a machine fails? — can you recover

Selection sort

Go through array looking for the smallest
number — 0 .. (size-1)

Once found, swap the first element in the
array with the smallest number

Repeat for the next element in the array and
SO On
e .. (size-1)

Performance 28.180sec 26.936sec 36.317sec

Pointers
I’'ve been putting this off until now

* OK, so these are a pain, however they can be
so powerful
* Whatis a pointer?
“A pointer is a reference to a place in memory”

Pointers (cont..)

If we have an integer;
int foo = 10; //this is a 4byte variable
(you know this)

int *ptr foo; //this is a pointer to a
variable (at the moment there 1s nothing
in 1it)

ptr foo = &foo; //sets the address of foo
to the pointer

*ptr foo = 42; //sets the integer that
ptr foo 1s pointing at to 42

Pointers (cont..)

Confused yet?

Anyone know why the size of ptr_foo is
8bytes where the size of foo is only 4bytes?

Can anyone think of why pointers are useful?

We’'ll leave pointers there for now and come
back to them later

More on functions

* Let’s do something useful with a function

#include <iostream>
using namespace std;
int square (int number) {
return (number * number);
}
int main(void) {
int myNumber = 5;

cout << “The square of V" << myNumber << W 1s %W <<
square (myNumber) << “\n”; //calls the function

So we have ‘passed’ a variable to
the function

* In the previous example, we ‘passed by
value’. Meaning that the value in the function

is a copy of the value we passed in from
main ().

* This is perfectly fine, however;
 Copying takes time
 Copying takes up more memory

* |sthere another way?

Solution: *sigh™ more pointers

* ‘Passing by reference’

#include <iostream>
using namespace std;
vold square (int *number) {
*number = *number * *number;
}
int main(void) {
int myNumber = 5;
square (myNumber) ;

cout << “The square of “ << myNumber << Y is “ <<
mynumber << “\n”; //calls the function

}
* Anyone tell me what the output will be?

Structures

| mentioned before that you can make your
own data types;

These are structures, let’s take an example
where you wish to write something to deal
with 3D coordinates.

| guess you could us a 3D array

But every time you wish to work with a point,
you heed to pass three elements

Structures (cont..)

#include <iostream>
using namespace std;
struct point{

int x;

int y;

int z;
i

int main () {

point pl;
pl.x = 10;
pl.y = 20;

pl.z = -10;

EVIL OBJECTS!!!

