
Introduction to C/C++

With some HPC added for fun 

Martin Vickers
mjv08@aber.ac.uk

What I am going to try to teach

• The ‘C/C++’ Programming Language
– Rather than just C++, which is almost identical

except for a few key additions (These will be
covered at the end)

• High Performance Computing
– We all want our programs to run faster, especially

when you have a deadline

• A little bit of UNIX and Shell scripts

Mainly because it’s easier to work with and I like
it 

What I am going to conveniently
forget about..

• Header files

– Important for large programs

• We are using a C++ compiler which means
some things won’t work in C alone

• Real concurrent programming. e.g. locks,
semaphores etc.

History of C

• Developed around 1969-1973 at AT&T Labs to
be used with UNIX by Dennis MacAlister
Ritchie

• Features derived from ‘B’

• Procedural Language

• The addition of struct made it very powerful

• Much of UNIX kernel is in C

Types of C

• Kernighan and Ritchie (K&R)
– 1978 book The C Programming Language

– The first ‘informal’ C specification

– Introduced; standard libraries, long int,
compound operators (e.g. i *= 10)

• ANSI C (American National Standards Institute)
– To establish a standard C

– Later adopted by ISO (International Organization
for Standardization)

Types of C

• C99

– An updated version of ANSI C

– New features (none of which are important for
this lecture series)

– Been the standard ever since even though C1X has
been on the drawing board since 2007

Why is C important?

• Almost all operating system kernels are
written in C

– FYI – A kernel is the interface between hardware
and software – e.g. It lets the programmer use the
hardware

• You can work with the most fundamental
parts of the computer using C

• As it is ‘low level’, it’s very very fast

Downsides to C

• Compilation standards
are often an issue

• It does things you don’t
expect

– It’s your fault, not the
language!!!!

• You can really mess
things up in C

Where did C++ come from?

• Bjarne Stroustrup at Bell Labs

• Originally called “C with Classes”

• Developed in 1979, later became C++
in 1983

• Has enhancements such as classes,
overloading, multiple inheritence,
exception handling, polymorphism
(very cool ) and much more

High Performance Computing (HPC)

• Big Computers

• Cost a lot of money

• Lots of memory,
processors and storage

• Very powerful

•we have one in the
basement (holly)

– A Beowulf cluster

HPC – CPUs and Memory

Single CPU and Memory Multiprocessor with
Shared Memory

HPC – CPUs and Memory (cont.)

• Multiple CPU and Memory

– Essentially lots of computers
hooked up together with one
in charge

• Also known as a Beowulf
cluster

• Simply put, lots of
computers can be a High
Performance Computer

Right...before we program

• UNIX 

– The command line (it’s so pretty)

– Everything runs from the command line

• Editor

– EMACS, VI, nedit, pico

• Compiler

– g++, gcc (there are lots more...and they don’t all
produce the same output)

Hello IMAPS!
• The most basic C program you will write

• Things to think about;
– #include <iostream>

– int main(void) // you may see just main()

– cout <<

– Lines end in ;

• g++ program.c (simples)

• Produces exec file called a.out
– Can run g++ program.c –o myProgram to produce something

else

• To run a.out (or whatever you’ve typed using -o)
– ./a.out

Variables

• Nothing new really;
– Four common primitive types

• char, int, float and double

• These can be signed or unsigned
– unsigned are non-negative values

– signed are half/half (if you declare signed int, it is the
same as simply int)

• Sizes
– long or short (gives a larger range – architecture specific)

– Assignment
• int a = 10;

• int b = a;

A little more about primitive types

• Integer types – whole numbers
– bool //0 or 1, true of false – 1 bit

– char //8 bits

– short //16 bits

– int //16 bits

– long //32 bits

• Can be signed or unsigned

An aside - Binary

• Just in case you didn't know;

– A binary zero or one is called a bit

– There are 8 bits in a byte

– A byte is the smallest addressable space in
memory

– Read binary from right to left (an unsigned char)

128 64 32 16 8 4 2 1

 0 1 1 0 0 0 1 1 = 99

– It gets more complicated with floating points, HEX
etc.

More primitives

• Floating point types

– float //32 bit

– double //64 bit

– long double //128 bit

• And you can make your own!!!

– We will come to that later

• Let's see how big types are;

– sizeof(variable);

Arithmetic Operators

• Again, nothing new

– + - * /

– Extras such as;
• ()

• % modulus

• ++ and --(increment and decrement) e.g. a++ or b--

• Orders of precedence

– Look it up, but it is pretty much what one would
expect (well at least at this level)

Conditional and Logical Operators

• Comparing variables

• More stuff you probably know..
– Conditional

• equal to == (e.g. a == b)

• not equal to != (e.g. a != b)

• greater/less than < > (e.g. a > b)

– Logical
• not ! (e.g. !a)

• and && (a && b)

• Or || (a || b)

Putting it together with if statements

 if(thing){

 //do something

} else if (other_thing) {

 //do something different

} else {

 //well it’s something else

}

• This is an if statement...the bread and butter
of procedural programming

Putting it together with if statements

• CODE EXAMPLE, I suppose we could write
something live in a lecture....

Loops

• While loop (will only run if condition is TRUE)
while(something){

 //keep doing

}

• Do while (will ALWAYS do the loop once)
do{

 //keep doing

} while(something);

Loops (cont.)

• For loop – my favourite loop 
for(initialisation; condition; update){

 //do something

}

• Example (this will execute 10 times);
for(int i = 0; i < 10; i++){

 //do something

}

/*a quick note, this loop wouldn’t work

in C, as you need to declare i outside

the loop*/

Loops.c

Example code

Infinite loop

• DANGER WILL ROBINSON!

• An infinite loop can be caused on purpose or by
mistake
– On purpose

while(1){

}

– Bit of a (intentionally daft) mistake
int i;

for (i = 1; i > 0; i++) {

 //loop code

}

Note: In reality, when i gets to the size limit of an int, it’ll stop

Break and Continue

• break; //exits to the nearest outer loop

• continue; //skips to the test condition of loop

• This example will show loops

• adv_loops.c //while with break

• adv_loops2.c //do while with break

Switch statement

• Kind of like an if statement...
switch(variable){

case 1:

//do something when variable = 1

case 2:

//do something else when variable = 2

default:

//if none of the others, do something

}

Functions

• Break up the program a little
#include <iostream>

void myFunction(){

printf(“Hey, look at me!! I am a function \n”);

}

int main(void){

myFunction(); //calls the function

}

• main() has to be at the bottom of your program

Let's take a minute to think
about.....

• Commenting your code
/*Everything inside here will be a comment even

if it's multiple lines*/

int a = 0; //for the rest of the line

• Make you code look pretty 

Example

Arrays

• These can get very complicated, but we will
start simple....
#include <stdio.h>

int main(void){

int anArray[10];

for(int i = 0; i < 10; i++){

anArray[i] = i; //populate array

}

}

Another way to declare an array

#include <stdio.h>

int main(void){

int anArray[3] = {1, 2, 3};

for(int i = 0; i < 10; i++){

anArray[i] = i; //populate array

}

}

• array.c example

Command line arguments

• This is why we love unix

• Allows program
variables to be defined
at run time

How to use it

#include <iostream>

int main(int argc, char *argv[]){

cout << argv[1] << “\n”; //print out 1st arg

cout << argv[0] << “\n”; //program name

cout << argc << “\n”; //number of args

}

• What does char *argv[] actually mean?

– Basically you have a 2D array...more on this later

So now we have the
argument....well it's a char

• We need to change it to something else
#include <iostream>

#include <stdlib.h>

int main(int argc, char *argv[]){

int anArray[argc-1];

for(int i = 1; i < argc; i++){

anArray[i-1] = atoi(argv[i]);

}

for(int i = 0; i < (argc-1); i++){

std::cout << “Contains ” << anArray[i] << ”\n”;

}

}

Some things to note..

• Notice how we suddenly have to be careful
about what our iterator is doing.

• The atoi and others belong to stdlib.h
• atoi() //converts a char array to int

• atol() //...to long integer

• atof() //...to double

• More on strings later

I’m sick of writing std::cout
So we can use namespaces 

• It’s a C++ thing, so wouldn’t work in C

• At the top of the page you can write;

using namespace std;

• This allows you to use commands within std
without having to mention it every time

Since I’ve mentioned std, what is
it?

• This is the ANSI Standard Library

• It contains lots of functions written for C and
C++ (since most of the C stuff is old, it’s still
there but has been renamed)

• e.g. cstring and string

• http://www.cplusplus.com/reference/

• To use these, you must;

 #include <header> or #include <name>

http://www.cplusplus.com/reference/

Some libraries you may wish to use

• #include <iostream>

• We’ve been using already for cout

• #include <math.h> or #include <cmath>

• Gives you all your mathematical operators

• #include <stdio.h>

• This is for C++ input/output

• printf(“This is useful \n”); //an

alternative to cout

A note on Architecture

• 32 or 64 bit

• Two implications; memory and word size

• But there are more....

• Compilation is important

• Working with primitive types in memory – use
sizeof() to be safe (you’ve already used this)

OK A bit of UNIX goodness 

• You can do lots of things from the command
line using BASH (Bourne Again SHell)

• A simple usage of this is to run a program
multiple times (consider larger programs)

• We have loops in BASH;

for i in 1 2 3; do echo $i; done

It’s a bit different from C/C++

What does your program actually
do?

• This can be viewed by using strace in UNIX

OK, let’s do a few exercises

• Write hello IMAPS – simply to make sure you
can use an editor, the command line and g++

• Write a program to calculate the smallest of
several values

• User enters X values into the command line

• Your program will find the smallest

• Print it to the screen

• I will show you how to run multiple time from
a data file

Reading in a file

• So far, we’ve taken user input from the
command line (which is so pretty )

• However…..there is a limit to how much you
can put in the command line

• E.g. on 32bit Linux kernal 2.6, max = 32,767

• So if we read it in from a file, we can have
more 

fstream

• A simple version

string line;

ifstream myfile(“myfile.dat”);

while(!myfile.eof()){

 getline(myfile, line);

}

What if the file fails to read?

• It crashes and you don’t know why

• So….
if(!myfile){

 cout << “The file didn’t open\n”;

 return -1;

}

• Did you ever wonder what the int main()
part did?

• It defaults to 0 is main executed without error

• By returning -1, the program exited with error

Strings

• In C there are no strings, we have char arrays

• As such they are a pain to work with

• However luckily C++ has string.h 

• So can read out file line by line as a string

• Convert out string to the format we want;

• int x = atoi(line);

Great, but what if the file contains
many columns

• Told you strings were a pain….

• We need to split the line

char * split;

split = strtok(line, “ “);

while(split !=NULL){

 cout << split << “\n”;

 split = strtok(NULL, “ “);

}

• string_split.c

The bubble sort algorithm

• Very simple (if a little inefficient)

• Sorts numbers into order

• It works like this;
• Go through every element in the array

• If the element is larger than the one to its right, then
switch it

• If you’ve switched it, store somehow that you’ve made a
switch (you don’t need to record what you’ve done)

• Repeat until you complete a pass without switching
anything

Exercise

• Implement bubble sort

• Tip: It’s not that different from the smallest
value program

• Program specific details

• ./a.out filename.dat 10000

• The file contains 1 column of integers

• Print out file in the correct order

• The time command before the program tells
you the time taken to run

Any optimisations?

• Observation:

• The largest value, even if it is in the very first
element of the array, will always be pushed to
the end.

• So:

• We would loop through all the elements the first
time, then all but the end one the second time
and so on.

Performance

• On 100,000 elements, run 3 times for each
algorithm on Intel 2.5Ghz

• Bubble sort

• 1m11.492sec 1m11.857sec 1m10.324sec

• Optimised Bubble sort

• 53.253sec 51.658sec 53.383sec

We have lots of files to sort

• OK so we have 10 files to sort, how can we
speed things up?

• BASH 

A note on HPC

• The easiest way to use HPC is to break the job
down into multiple parts, and run it in several
places

• Issues:

• Keeping track of what you’ve done

• What if a machine fails? – can you recover

Selection sort

• Go through array looking for the smallest
number – 0 .. (size-1)

• Once found, swap the first element in the
array with the smallest number

• Repeat for the next element in the array and
so on

• i .. (size-1)

• Performance 28.180sec 26.936sec 36.317sec

Pointers
I’ve been putting this off until now

• OK, so these are a pain, however they can be
so powerful

• What is a pointer?

“A pointer is a reference to a place in memory”

Pointers (cont..)

• If we have an integer;
int foo = 10; //this is a 4byte variable

(you know this)

int *ptr_foo; //this is a pointer to a

variable (at the moment there is nothing

in it)

ptr_foo = &foo; //sets the address of foo

to the pointer

*ptr_foo = 42; //sets the integer that

ptr_foo is pointing at to 42

Pointers (cont..)

• Confused yet?

• Anyone know why the size of ptr_foo is
8bytes where the size of foo is only 4bytes?

• Can anyone think of why pointers are useful?

• We’ll leave pointers there for now and come
back to them later

More on functions

• Let’s do something useful with a function
#include <iostream>

using namespace std;

int square(int number){

return (number * number);

}

int main(void){

 int myNumber = 5;

 cout << “The square of “ << myNumber << “ is “ <<

square(myNumber) << “\n”; //calls the function

}

So we have ‘passed’ a variable to
the function

• In the previous example, we ‘passed by
value’. Meaning that the value in the function
is a copy of the value we passed in from
main().

• This is perfectly fine, however;

• Copying takes time

• Copying takes up more memory

• Is there another way?

Solution: *sigh* more pointers

• ‘Passing by reference’
#include <iostream>

using namespace std;

void square(int *number){

*number = *number * *number;

}

int main(void){

 int myNumber = 5;

 square(myNumber);

 cout << “The square of “ << myNumber << “ is “ <<

mynumber << “\n”; //calls the function

}

• Anyone tell me what the output will be?

Structures

• I mentioned before that you can make your
own data types;

• These are structures, let’s take an example
where you wish to write something to deal
with 3D coordinates.

• I guess you could us a 3D array

• But every time you wish to work with a point,
you need to pass three elements

Structures (cont..)

#include <iostream>

using namespace std;

struct point{

 int x;

 int y;

 int z;

};

int main(){

 point p1;

 p1.x = 10;

 p1.y = 20;

 p1.z = -10;

}

EVIL OBJECTS!!!!

